Genetics Primer – Genetics for Central Cancer Registries

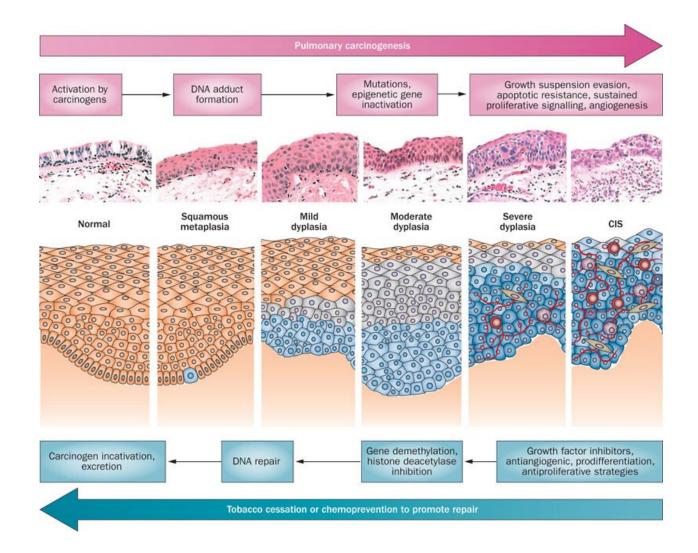
Eric B. Durbin, DrPH, MS

Assistant Professor, Division of Biomedical Informatics, College of Medicine Director, Cancer Research Informatics Shared Resource Facility, Markey Cancer Center Director, Kentucky Cancer Registry University of Kentucky

> Florida Cancer Data System Annual Conference August 11, 2022

Topics to be Covered

- Why collect genomic tumor data?
- Genomic data routinely generated for clinical oncology
- A central registry approach to surveillance of genomic data
- Central registry infrastructure needed



Why Collect Genomic Tumor Data?

A Public Health Cancer Surveillance Imperative

Carcinogenesis: A Genomic Process

Keith, R., Miller, Y. Lung cancer chemoprevention: current status and future prospects. *Nat Rev Clin Oncol* **10**, 334–343 (2013). https://doi.org/10.1038/nrclinonc.2013.64

NSCLC Treatment Before Genomics

2-drug platinum-based regimens

R

A

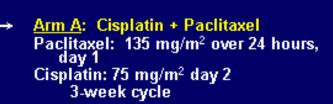
Ν

D

0

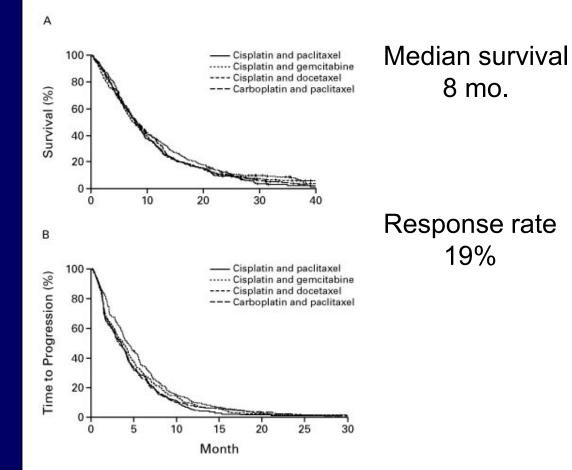
M

Ζ


Ε

Stratification Performance status 0-1 vs. 2

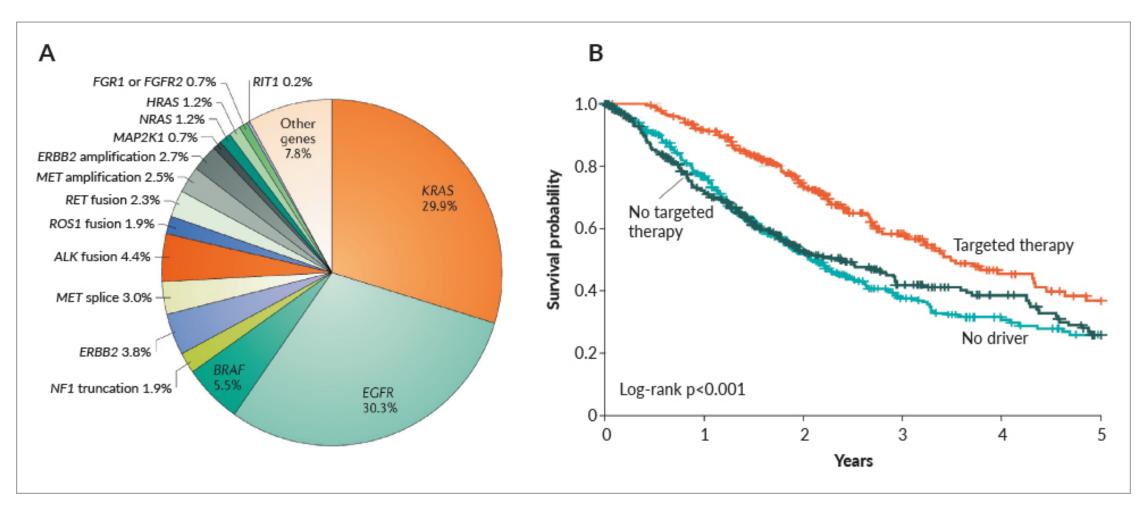
Weight loss in previous 6 months <5% vs. ≥5%


Disease stage IIIB or IV

Presence or absence of brain metastases

- Arm B: Cisplatin + Gemcitabine Gemcitabine: 1,000 mg/m² days 1,8,15 Cisplatin: 100 mg/m² day 1 4-week cycle
- Arm C: Cisplatin + Docetaxel Docetaxel: 75 mg/m² day 1 Cisplatin: 75 mg/m² day 1 3-week cycle

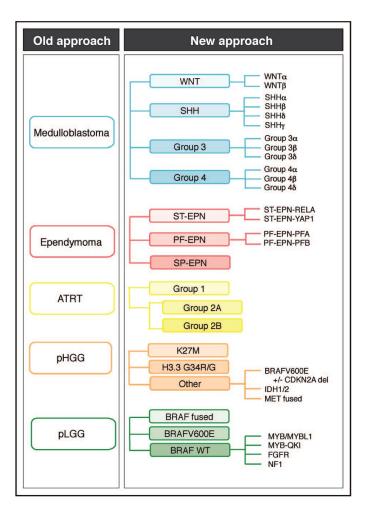
Arm D: Carboplatin + Paclitaxel Paclitaxel: 225 mg/m² over 3 hours, day 1 Carboplatin: AUC 6.0 day 1 3-week cycle



Median time to tumor progression (TTP) 3.7 mo.

Schiller JH. NEJM 2002; 346:92-98

Slide courtesy of Dr. Jill Kolesar


Current and Future Targets in NSCLC

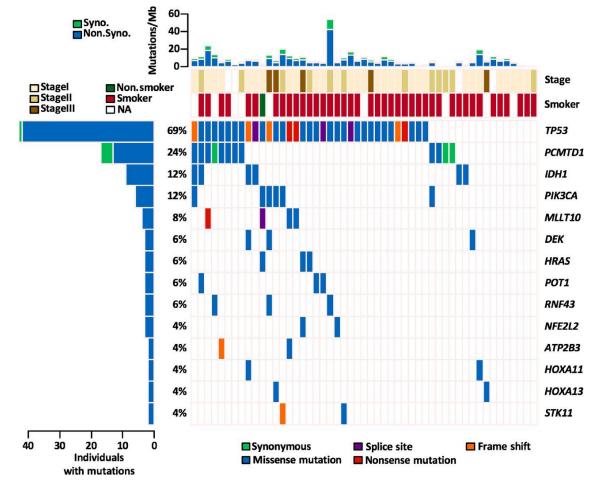
Meisel 2020, Healthbook

Slide courtesy of Dr. Jill Kolesar

Shifting Paradigm in Treatment of Pediatric Brain Tumors

- Medulloblastoma Subgroup of Embryonal Tumors
- Ependymoma A type of CNS Tumor
- Atypical Teratoid/Rhabdoid Tumors (ATRT) – Rhabdoid tumors of the CNS, common in very young children
- Pediatric High-Grade Glioma (pHGG) heterogenous malignant tumors
- Pediatric Low-Grade Glioma (pLGG) histologically diverse benign tumors of glial origin

Guerreiro Stucklin, Ana S, Ramaswamy, Vijay, Daniels, Craig, and Taylor, Michael D. "Review of Molecular Classification and Treatment Implications of Pediatric Brain Tumors." Current Opinion in Pediatrics. 30.1 (2018): 3-9. Web.


Genomic Data **Capture: A** Public Health Imperative How do genomic variants impact treatment, treatment response, and survival in the population?

Do disparities exist in patients who have access to molecular testing and targeted therapy?

Do molecular profiles vary by geography, race/ethnicity, or socio-economic status?

Can genetic testing be used to identify cancer risk, diagnose cancer sooner or prevent cancer?

Appalachian KY vs TCGA Mutations in Whole Exome Sequencing of Squamous Cell Lung Cancer (N=51)

This study identified an increased percentage of IDH1 and PCMTD1 mutations in SQCC arising in the Appalachian KY residents versus TCGA, with population-specific implications for the personalized treatment of this disease.

Characterization of Squamous Cell Lung Cancers from Appalachian Kentucky. Jinpeng Liu, Thilakam Murali, Tianxin Yu, Chunming Liu, Theru A. Sivakumaran, Hunter N.B. Moseley, Igor B. Zhulin, Heidi L. Weiss, Eric B. Durbin, Sally R. Ellingson, Jinze Liu, Bin Huang, Brent J. Hallahan, Craig M. Horbinski, Kurt Hodges, Dana L. Napier, Thèrése Bocklage, Joseph Mueller, Nathan L. Vanderford, David W. Fardo, Chi Wang and Susanne M. Arnold. Cancer Epidemiol Biomarkers Prev February 1 2019 (28) (2) 348-356; DOI: 10.1158/1055-9965.EPI-17-0984

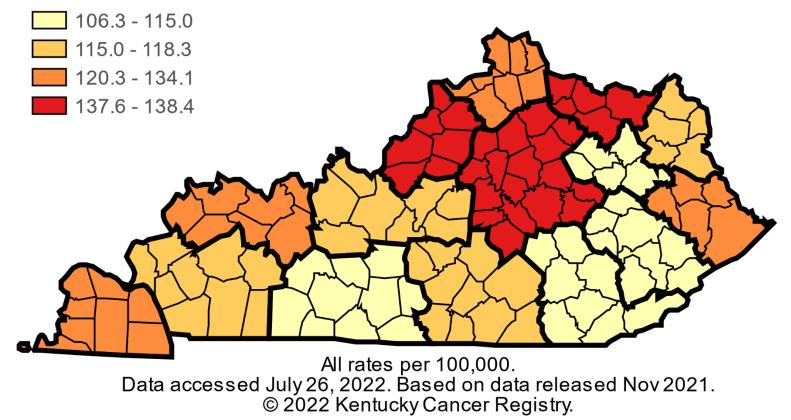
EGFR Testing and Erlotinib Use in Non-Small Cell Lung Cancer Patients in Kentucky

Modeling Had EGFR Testing						
Variable	OR (95% CI)	P-Value				
Age (ref = 75+)		0.0001				
20–49	4.15 (2.17-7.91)					
50-64	1.76 (1.16–2.67)					
65-74	1.39 (0.98–1.98)					
Sex (ref = Male)		0.0142				
Female	1.44 (1.08–1.93)					
Appalachian Status (ref = Non-Appalachia/Metro)		0.0011				
Appalachian/Metro	0.67 (0.28–1.59)					
Appalachian/Non-Metro	0.51 (0.36-0.73)					
Non-Appalachian/Non-Metro	0.60 (0.40-0.89)					
Year of Diagnosis (ref = 2007)		< 0.0001				
2008	3.81 (0.43-34.68)					
2009	22.30 (3.00-165.41)					
2010	58.56 (8.12-422.26)					
2011	113.47 (15.81-814.21)					
Insurance (ref = Private)		< 0.0001				
Medicaid	0.19 (0.09–0.40)					
Medicare	0.61 (0.44–0.84)					
Smoking (ref = No)		0.0266				
Yes	0.54 (0.32–0.91)					
Unknown	0.83 (0.42-1.66)					

Modeling Receive Erlotinib					
Variable	OR (95% CI)	P-Value			
Age (ref = 75+)		0.0077			
20–49	2.05 (1.02-4.14)				
50-64	1.97 (1.31–2.95)				
65–74	1.56 (1.10–2.21)				
Sex (ref = Male)		0.0045			
Female	1.49 (1.13–1.97)				
Insurance (ref = Private)		0.0074			
Medicaid	0.55 (0.33-0.93)				
Medicare	0.63 (0.46–0.87)				
Poverty (ref = Low)		0.0081			
Moderate	1.90 (1.24–2.91)				
High	1.84 (1.22–2.79)				
Very High	1.33 (0.85–2.09)				

OR = odds ratio; CI = confidence interval; (ref) = reference variable

https://doi.org/10.1371/journal.pone.0237790.t004


OR = odds ratio; CI = confidence interval; (ref) = reference variable

https://doi.org/10.1371/journal.pone.0237790.t003

Larson KL, Huang B, Chen Q, Tucker T, Schuh M, et al. (2020) EGFR testing and erlotinib use in non-small cell lung cancer patients in Kentucky. PLOS ONE 15(8): e0237790. <u>https://doi.org/10.1371/journal.pone.0237790</u>

Age-Adjusted Invasive Cancer Incidence Rates in Kentucky Breast, Female, 2014 - 2018 By Area Development District Age-Adjusted to the 2000 U.S. Standard Million Population

Kentucky Rate: 128.0 / per 100,000

Age-Adjusted Invasive Cancer Incidence Rates in Kentucky Triple Negative (HR-/HER2-) - Breast, Female, 2014 - 2018 By Area Development District Age-Adjusted to the 2000 U.S. Standard Million Population

Kantuala, Data: 117/nor 100 000

Do geographic variations also exist in incidence of cancer genomic subtypes?

Genomic Data Generated for Clinical Oncology

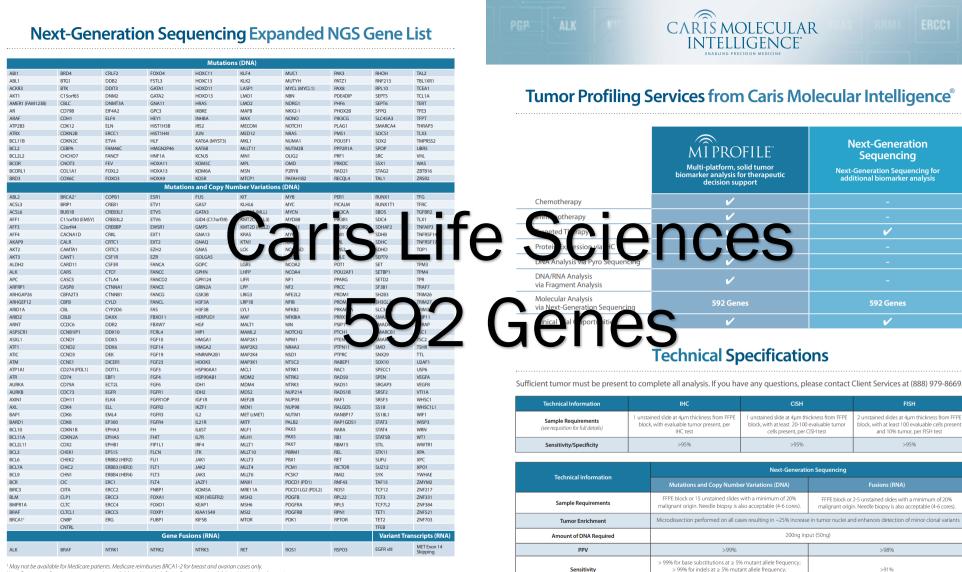
New Challenges in Cancer Surveillance

Next Generation Sequencing (NGS) Multi-Gene Targeted Panels

Kentucky Cancer Registry (KCR) Cancer Genomics Data Sources

- Clinical NGS reports
- Research NGS Reports Oncology Research Information Exchange Network (ORIEN)
- Pediatric Brain Tumor Study

Common Clinical NGS Service Providers in U.S.


- Guardant Health
- Foundation Medicine
- Caris Life Sciences
- Tempus
- Others

Current Gene List²

Genes with full coding exonic regions included in FoundationOne[®]CDx for the detection of substitutions, insertion-deletions (indels), and copy-number alterations (CNAs).

ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B)	APC
AR	ARAF	ARFRP1	ARIDIA	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AKAF AXIN1	AXL	BAPI	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BCL2L2 BTG1	BCL8 BTG2
BTK	C11ORF30 (EMSY)	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22		CD70	CD79A	CD79B	CDC73	CDH1
			CD274 (PD-L1)					
CDK12	CDK4	CDK6	CDK8	CDKNIA	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1	DDR2
DIS3	DNMT3A	DOTIL	EED	EGFR	EP300	EPHA3	EPHB1	EPHB4
ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2	FAM46C
FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14
FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FH	FLCN	FLT	FLT3	FOXL2	FUBPI	GABRA6	GATA3	GATA4
GATA6	GID4 (CHORF39)	SN II	0 1413	GNAQ	GN, B	GRMZ	G K3B	H3E3A
HDAC	HGI	HNIA	FAS	5D3 /	ID3	IE (12	
IKBKE	IKZ	INF 4B	11 =2	=4	IRS.	J. (1	J. K2	JA. B
	KDI 5A	51.5C	K. MA	KDR	KEAP1	KEL		KLIL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITE		MLH1	MPL	MRE11A	MSH2	MSH3
MSH6	MSTIR	MITA	MTOR	MULTI	MYC	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFET 2	N KBIA	NIN 2-1	Nor	VOTCH2	NOTCH3
NPM1	NRAS	N75 8	NT KI	N RK2	3		PALB2	PARK2
PARP1	PARP2	PAR	PAX5	PL MI	PD())1 (F)-1)	A CDILCT (CD-L2)	DGFRA	PDGFRB
PDK1	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIM1	PMS2	POLD1
POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI	PTCH1	PTEN
PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C	RAD51D
RAD52	RAD54L	RAF1	RARA	RB1	RBM10	REL	RET	RICTOR
RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC	SDHD	SETD2	SF3B1
SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1	SOX2
SOX9	SPEN	SPOP	SRC	STAG2	STAT3	STK11	SUFU	SYK
TBX3	TEK	TET2	TGFBR2	TIPARP	TNFAIP3	TNFRSF14	TP53	TSC1
TSC2	TYRO3	U2AF1	VEGFA	VHL	WHSC1 (MMSET)	WHSC1L1	WT1	XPO1
XRCC2	ZNF217	ZNF703						
Select R	earrangement	.S ^{2,3}						
Genes witl	h select intronic	regions for the	detection of ge	ene rearrangem	ents, one gene	with a promote	er	
region and	d one non-coding	g RNA gene.						
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)
MSH2	MYB	MYC	NOTCH2	NTRKI	NTRK2	NUTMI	PDGFRA	RAF1
RARA	RET	ROS1	RSPO2	SDC4	SLC34A2	TERC*	TERT (PROMOTER C	NLY)**
TMPRSS2								
*TERC is non-codi	ing RNA gene. th promoter region.							

FoundationOne*CDx is a qualitative next-generation sequencing based in vitro diagnostic test for advanced cancer patients with solid tumors and is for prescription use only. The test analyzes 324 genes as well as genomic signatures including microstatellite instability (MSI) and tumor mutational burden (TMB) and is a companion diagnostic to identify patients who may benefit from treatment with specific therapies in accordance with the approved therapeutic product labeling. Additional genomic findings may be reported and are not prescriptive or conclusive for labeled use of any specific therapeutic product. Use of the test does not guarantee a patient will be matched to a treatment. A negative result does not rule out the presence of an alteration. Some patients may require a biopsy. For the complete label, including companion diagnostic indications and important risk information, please visit www.FICDXLabel.com.

• May not be available for Medicare patients, medicare reimburss Bit(A) - 2 for oreast and ovarian cases only. Next-Generation Sequencing may not be available in New York State. For testing available in New York, please view the online New York Profile Menu (www.CaristMolecularIntelligence.com/solid_tumors-NY).

To order or learn more, visit www.CarisMolecularIntelligence.com.

US: 888.979.8669 | MIClientServices@carisls.com Intl: 00 41 21 533 53 00 | EUCustomerServices@carisls.com

Caris Molecular Intelligence is a trademark of Caris Life Sciences. © 2016 Caris Life Sciences. All rights reserved. TN0276 v5 December 14, 2016

CARIS

>30.000 Unique RNA Fragments

10 genes

>95% for copy number variations (amplifications ≥ 8 copies)

>750X

592 genes

Average Depth of Coverage (DNA)

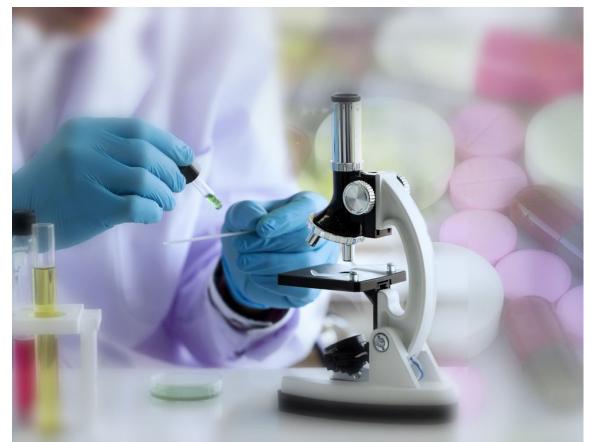
Average Depth/Count (RNA)

Number of Genes

REQUEST A KIT

Gene List

Guardant360 CDx is indicated to provide tumor mutation profiling for advanced cancer patients with any solid malignant neoplasm. Guardant360 CDx report contains both professional services, which includes 74 genes, in addition to the FDA-approved report, which includes 55 genes.


Point Mut	Point Mutations (SNVs) and Deletion Variants (Indels) (74 Genes)							cations e <i>nes)</i>	Fusions (6 Genes)		
AKT1	CDH1	FGFR2	KRAS	NPM1	RIT1		AR	FGFR1		A	LK
ALK	CDK4	FGFR3	MAP2K1	NRAS	ROS1		BRAF	FGFR2		FG	FR2
APC		GATA3	MAP2K2	TRK1	SMAD4		COND1	KIT		FG	FR3
AR	DKTZ	GN, 11	TAL KI	TF	SMD	l h	CNZ		IT		RK1
ARAF	CDKN2A	GNAQ	МАРКЗ	PDGFRA	STK11	•	CCNE1	MET		R	ET
ARID1A	CTNNB1	GNAS	MET	PIK3CA	TERT^		CDK4	MYC		RC	DS1
ATM	DDR2	HNF1A	N H1	PTEN	-P	n		PDGFRA			
BRAF	EGFR	HRAS	MPL	PTPN11	TSC1		EGFR	PIK3CA			
BRCA1	ERBB2	IDH1	MTOR	RAF1	VHL		ERBB2	RAF1			
BRCA2	ESR1	IDH2	MYC	RB1							
CCND1	EZH2	JAK2	NF1	RET							
CCND2	FBXW7	JAK3	NFE2L2	RHEB							
CCNE1	FGFR1	KIT	NOTCH1	RHOA							

Critical or all exons* completely sequenced and all four major classes of alterations

NSCLC guideline-recommended genes shown in bold / *Exons selected to maximize detection of known somatic mutations / ^ Includes TERT promoter region

Traditional Abstraction of Gene Mutations?

- Site Specific Data Items (SSDIs) take years to approve
 - Long after testing and clinical use have become standards of clinical care
- Registrars do not have time to review and manually code hundreds of gene mutations per case
- Obtaining test results directly from sequencing providers will be much more efficient and complete

Central Registry Infrastructure Needed to Capture Genomic Test Data

Moving Beyond the Limitations

Commercial Laboratory NGS Panel Testing and Reporting

Clinical Report

- Specific gene mutations from tumor tissue
- Suggestions for FDA approved targeted agents and clinical trials
- May or may not report variants of unknown significance

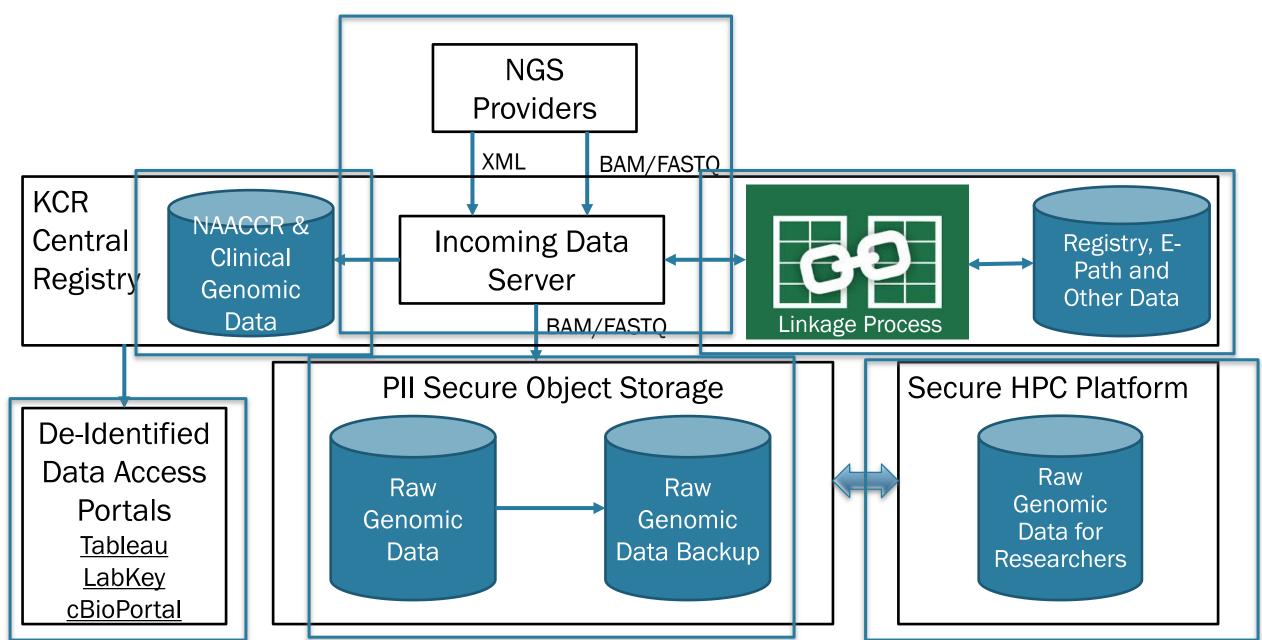
Raw Data used to Generate Clinical Report

- Sequencer -> FastQ -> BAM -> VCF -> Clinical Report
- Clinical report based upon current knowledge of mutation variants
- FastQ and BAM files contain information that may prove important in future
- At minimum, BAM files important for surveillance

016
016
s.

PATIENT RESULTS	TUMOR TYPE: BREAST CARCINOMA (NOS)
4 genomic findings	Genomic Alterations Identified [†]
2 therapies associated with potential clinical benefit	PIK3CA E545K ATM T2333fs*40 BCL2L1 amplification – equivocal*
0 therapies associated with lack of response	MYST3 amplification – equivocal*
10 clinical trials	Additional Disease-relevant Genes with No Reportable Alterations Identified [†] ERBB2

 ⁺ For a complete list of the genes assayed and performance specifications, please refer to the Appendix
[#] See Appendix for details


THERAPEUTIC IMPLICATIONS

Genomic Findings Detected	FDA-Approved Therapies (in patient's tumor type)	FDA-Approved Therapies (in another tumor type)	Potential Clinical Trials
РІКЗСА E545К	Everolimus	Temsirolimus	Yes, see clinical trials section
ATM T2333fs*40	None	None	Yes, see clinical trials section
BCL2L1 amplification - equivocal	None	None	None
MYST3 amplification - equivocal	None	None	None

Note: Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have little or no evidence in the patient's tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

Electronically Signed by Shakti Ramkissoon, M.D. | Jeffrey S. Ross, M.D., Medical Director | 09 December 2016 Foundation Medicine, Inc. / 1-888-988-3639

Genomic Data Flow into the Central Registry

KCR/MCC cBioPortal for Cancer Genomics

- I. The cBioPortal for Cancer Genomics is an open-access, open-source resource for interactive exploration of multidimensional cancer genomics data sets. The goal of cBioPortal is to significantly <u>lower the barriers</u> between complex genomic data and cancer researchers by providing rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects, and therefore to <u>empower researchers</u> to <u>translate</u> these rich data sets into biologic insights and clinical applications.
- II. Provide representative, de-identified, <u>population-based data</u> from <u>Kentucky</u> cancer patients annotated with high quality KCR data

🖅 cBioPortal for Cancer Genomic: 🗙 🛛 🕂

← → C ŵ CBioPortal FOR CANCER GENOMICS

53.0%

II\ 🗊 🔶 🗊 😑

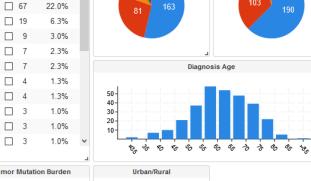
Logged in as ericd@kcr.uky.edu 🗸

Combined Study

This combined study contains samples from 14 studies O

Summary Clinical Data

Selected: 298 patients | 304 samples 🔹 🖡


amples 🔹 🖪 🛓	Custom Selection 🔹
--------------	--------------------

Click gene symbols below or enter here

M Plot: Overall Survival (months)	KM Plot: Disease Free Survival (Muta	ted Genes (302 prof	iled samples)		Structural Var	iant Genes (28	8 profiled samp	oles)		CNA Genes	(295 profiled	d samples)		Sex
	1	T Gene	# Mut	#	Freq 🗸	T Gene	# SV	#	Freq 🗸	T Gene	Cytoband	CNA	#	Freq 🗸	
00%-	100%-	TP53	267	233	77.2% ^	ALK	4	4	1.4%	MYC	8q24.21	AMP	34	11.5% ^	
-00/	500/	KRAS	99	98	32.5%	STK11	4	4	1.4%	SOX2	3q26.33	AMP	28	9.5%	131 167
50%-	50%-	STK11	46	46	15.2%	BRCA1	3	3	1.0%	RICTOR	5p13.1	AMP	27	9.2%	
0%	0%	CDKN2A	33	32	10.6%	NF1	3	3	1.0%	NKX2-1	14q13.3	AMP	24	8.1%	
0 50 100 150	0 20 40 60 80	SMARCA4	31	31	10.3%	LRP1B	3	3	1.0%	PIK3CA	3q26.32	AMP	21	7.1%	
Mutatio	n Count	KEAP1	27	27	8.9%	CDC73	3	3	1.0%	FGF10	5p12	AMP	🗌 19	6.4%	Race
80+		ARID1A	26	25	8.3%	RB1	2	2	0.7%	NFKBIA	14q13.2	AMP	19	6.4%	
50-		NF1	27	24	7.9%	RET	2	2	0.7%	TERC	3q26.2	AMP	🗌 19	6.4%	
40		RBM10	22	22	7.3%	ROS1	2	2	0.7%	PRKCI	3q26.2	AMP	17	5.8%	
20		PIK3CA	21	20	6.6%	APC	1	1	0.3%	CCND1	11q13.3	AMP	🗌 16	5.4%	260
v v v g		LRP1B	22	20	6.6% 🗸	CD74	1	1	0.3% 🗸	FGF19	11q13.3	AMP	16	5.4% 🗸	
<i>b</i>	0 × 0 0 % /4 	Search				Search				Search				L	
Histo	ology		Histology Coo	de		Topography Code	•	Latera	ality		Bes	st Stage Gro	up		Microsatilite Status
	# Freq -			#	Freq -								#	Freq 🗸	

	#	Freq 🗸		#
ADENOCARCINOMA, NOS	161	53.0% ^	8140	🗌 161
SQUAMOUS CELL CARCINOM	67	22.0%	8070	67
NON SM CELL CARCINOMA	19	6.3%	8046	19
LARGE CELL NEUROENDOCR	9	3.0%	8013	9
MUCINOUS ADENOCARCINOMA	7	2.3%	8041	7
SMALL CELL CARCINOMA, NOS	7	2.3%	8480	7
ACINAR CELL CARCINOMA	4	1.3%	8550	4
ACINAR CELL CYSTADENOCA	4	1.3%	8551	4
NEUROENDOCRINE CARCINO	3	1.0%	8022	3
PAPILLARY ADENOCARCINO	3	1.0%	8246	3
PLEOMORPHIC CARCINOMA Search	3	1.0% 🗸	■ 8260 Search	3

Data Sets Web API Tutorials/Webinars Visualize Your Data

Best Stage G	roup		
	#	Freq 🗸	
Stage IV	87	28.6%	^
Clinical Stage IVB	34	11.2%	
Pathologic Stage IVB	24	7.9%	
Stage IB	23	7.6%	
Stage IIIB	21	6.9%	
Pathologic Stage IVA	🗌 18	5.9%	
Stage IA	🗌 18	5.9%	
Stage IIIA	🗌 18	5.9%	
Clinical Stage IVA	8	2.6%	
Stage IIB	8	2.6%	
Clinical Stage IIIA	6	2.0%	~
Search			-

Transmission and Storage Requirements

Secure FTP between central registry and sequencing provider

- Push or pull
- Molecular data files must contain linkage identifiers
 - Patient: Last Name, First Name, Date of Birth, SSN, Medical Record Number
 - Case: Diagnosis (Site/Histology), Diagnosis Date, Path Report Number (Specimen), Specimen Date
- Data storage needed

Data Type	Average Size	Storage for 1000 Records
XML (Mutations)	< 1 Mb	< 1 GB
PDF (Clinical Reports)	< 1 Mb	< 1 GB
BAM (Processed Raw Data)	2.3 GB (+10MB Index)	~3 TB
FASTQ (WES Raw Data)	20-40GB	20-40 TB

Other Resource Considerations

Legal

- Data Use Agreements with Sequencing Providers
- Hospital Agreements (permission to send results to registry)

Staffing

- Technical infrastructure development
- PII security (protecting germline sequencing)
- Bioinformatics support
- Cancer registrars for reviewing and linking genomic reports with path reports and registry data

Acknowledgements: KCR/Markey Informatics Teams

Questions/Discussion

 Contact Information: Eric B. Durbin, DrPH, MS Director, Kentucky Cancer Registry Telephone: 859-218-3182
E-mail: ericd@kcr.uky.edu
Web: http://www.kcr.uky.edu

Acknowledgements

- Kentucky Cancer Registry
 - Operations and Informatics
- MCC Cancer Research Informatics Shared Resource Facility
- Children's Hospital of Philadelphia
- Funding Acknowledgements
 - Commonwealth of Kentucky
 - Pediatric Cancer Research Trust Fund
 - University of Kentucky Markey Cancer Center
 - CDC/NPCR/ECC: U58DP005400, U58DP006313
 - NCI/SEER: HHSN261201000131, P30CA177558

